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COMPUTATION OF NONLINEAR BACKSCATTERING USING A HIGH-ORDER

NUMERICAL METHOD�

G. FIBICHyz, B. ILANyx, AND S. TSYNKOVy{

Abstract. The nonlinear Schr�odinger equation (NLS) is the standard model for propagation of intense

laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing

the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order

�nite-di�erence method supplemented by special two-way arti�cial boundary conditions (ABCs) to solve the

NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH

and NLS models and for an accurate quantitative assessment of the backscattered signal.
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1. Introduction. The propagation of intense laser beams (time-harmonic electromagnetic waves) in a

bulk Kerr medium is usually modeled by the critical nonlinear Schr�odinger equation (NLS) for the electric

�eld amplitude. Since light rays bend toward areas with higher index of refraction, the nonlinear dependence

of the index of refraction on beam intensity has a self-focusing e�ect, whereby a su�ciently intense laser

beam becomes narrower as it propagates. In particular, the NLS model predicts that when the input beam

power (L2 norm) exceeds a given critical threshold Nc, then the beam can collapse to a point at a �nite

propagation distance. For more information of self-focusing, see e.g., [6, 9].

As the beam propagates it induces changes in the optical properties of the medium. As a result, part of

the incoming wave is re
ected back, a phenomenon referred to as backscattering. Very little is actually known

on backscattering in nonlinear self-focusing, except for the general belief that it is \small." Since, however,

small-magnitude mechanisms can have a large e�ect in self-focusing [6], there is a need to accurately quantify

the magnitude of backscattering and study how this phenomenon may a�ect the beam propagation. Another

application which could greatly bene�t from better understanding of backscattering is remote sensing of the

atmosphere [12], where the measured signal is exactly the backscattered wave.

The backscattered wave is neglected in the NLS model which only describes the forward-propagating

wave. Calculation of backscattering requires, therefore, going back to the nonlinear Helmholtz equation

(NLH), from which the NLS is derived. The NLS is an evolution equation with the spatial coordinate in the

direction of propagation playing the role of \time." Therefore, the correct mathematical formulation for the

NLS is the Cauchy (initial value) problem and as such, solving it numerically is a relatively straightforward

computational procedure. In contradistinction to that, the NLH is elliptic in its nature, and a special

multidimensional boundary value problem needs to be formulated and solved for this equation, which is a

much harder task from the standpoint of computing. The �rst numerical simulations based on solving a
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boundary value problem for the NLH were recently performed in [7] using an advanced fourth-order method.

In that study, the design fourth-order convergence rate of the method was corroborated experimentally on a

model linear problem. Subsequently, a series of the grid convergence tests were conducted in the nonlinear

regime. In the current paper we go beyond grid-convergence arguments and show that the asymptotic limit of

the NLH solutions obtained in the simulations is the corresponding NLS solution. This comparison provides

strong support that the calculated NLH solution is indeed the physical one. In Section 2.3 we obtain an

asymptotic estimate of the magnitude of backscattering and subsequently show in Section 4 that it agrees

with the calculated values.

When the initial datum is su�ciently large the NLS solution develops singularities at a �nite propagation

distance (see Section 2.5). Since, however, physical quantities do not become in�nite, a natural question

is whether the corresponding solution of the NLH exists globally. This fundamental question has been

open for many years. There have been indications, though, that solutions to the NLH exist even when

the corresponding NLS solutions become singular, based on both numerical solution of \modi�ed" NLH

equations [1,2,4] and on asymptotic analysis [5], but these studies did not take into account backscattering

e�ects. Therefore, our long-term goal is to solve the NLH for those incoming signals that lead to blowup

in the NLS model. In the current study, however, we concentrate on the more attainable goal of better

understanding (in terms of both analysis and numerical simulations) the regime when the corresponding

solution of the NLS does not blow up. Our hope is that this understanding will eventually allow to solve the

NLH for \any" incoming signal.

2. Mathematical Models.

2.1. The Nonlinear Helmholtz Equation. A typical experimental setup (both physical and

numerical) for the propagation of waves in Kerr media is shown in Figure 2.1. An incoming laser beam

with known characteristics impinges normally on the planar interface z = 0 between the linear and the

nonlinear media. The electric �eld E = E(x1; : : : ; xD�1; z) in R
D is governed by the nonlinear Helmholtz

equation

(@zz +�?)E + k2E = 0; k2 = k20(1 + �jEj2�); (x1; : : : ; xD�1) 2 RD�1 ; z � 0;(2.1)

where k0 is the wavenumber, � = 4�0cn2, n2 is the Kerr coe�cient, and �? = @x1x1 + : : : + @xD�1xD�1 is

the transverse Laplacian (the di�raction term), see, e.g., [3, 8]. For simplicity we consider from now on the

cylindrically-symmetric case where E = E(r; z) and r =
q
x21 + : : :+ x2D�1.

The nonlinear medium occupies the semi-space z � 0 (see Figure 2.1). Consequently, the NLH (2.1)

has to be supplemented by boundary conditions at z = 0 and z �! +1. We require that as z �! +1, E

has no left-traveling components and that the propagation is di�raction-dominated with the �eld amplitude

decaying to zero, i.e., lim
z!1

max
0�r<1

jE(r; z)j = 0, which also means lim
z!+1

k2 = k20 : In other words, at large z's

the solution should be a linear superposition of right-traveling waves. Since the actual numerical simulation

is carried out on a truncated domain 0 � z � zmax (Figure 2.1), the desired behavior of the solution as

z �! +1 has to be captured by a far-�eld arti�cial boundary condition (ABC) at the arti�cial boundary

z = zmax. This boundary condition should guarantee a re
ectionless propagation of all the waves traveling

toward z = +1. Often, boundary conditions designed to ensure the transparency of the outer boundary to

the outgoing waves are called radiation boundary conditions [10].

The situation is more complicated at the interface z = 0, where the total �eld E(r; 0) is composed

of a given incoming (right-traveling) component Einc(r; 0) and an unknown backscattered (left-traveling)
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Fig. 2.1. Schematic of propagation of waves in Kerr media.

component Escat(r; 0), i.e.,

E(r; 0) = Einc(r; 0) +Escat(r; 0) :

As such, the boundary condition at z = 0 has to guarantee the re
ectionless propagation of any left-

traveling wave through the interface and at the same time be able to correctly prescribe the incoming signal.

Implementation of such two-way ABC was done in [7].

Finally, we assume symmetry at r = 0 and vanishing of the electric �eld as r �! +1. In practice, we

truncate the domain at some large but �nite rmax and require that E(rmax; z) = 0. The justi�cation for the

use of this approach to treat the \lateral" boundaries can be found in [10] and the bibliography there.

Let us also note that in this study we do not take into account the e�ect of discontinuity in the index

of refraction across the interface z = 0. Thus, we assume that Einc(r; 0) is the incoming wave after it has

already passed through the interface (i.e., at z = 0+). We also assume that left-traveling (i.e., backscattered)

waves are not re
ected by the interface z = 0 back into the domain z � 0. One can expect the latter e�ect

to be small; it will be investigated in a future study.

2.2. Paraxial Approximation and the Nonlinear Schr�odinger Equation. Let r0 be the initial

width of the impinging beam. We �rst introduce the dimensionless quantities ~r, ~z, and  as

~r =
r

r0
; ~z =

z

2LDF
; E = eik0z(�r20k

2
0)
�1=2� (r; z) ;(2.2)

where LDF = k0r
2
0 is the di�raction length. Then, by dropping the tildes we obtain

i z +�? + j j2� = �4f2 zz ;(2.3)

where f = 1=r0k0 � 1 is the nonparaxiality parameter.

The standard derivation of the NLS is based on the assumption that the envelope  is slowly varying.

In that case, one can neglect the term on the right-hand side of (2.3) [i.e., apply the paraxial approximation]

and obtain the nonlinear Schr�odinger equation

i z +�? + j j2� = 0 :(2.4)

The NLS (2.4) is supplemented by the initial condition at z = 0

 (r; 0) = (�r20k
2
0)
1=2�Einc(r; 0) :
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Subsequently, it needs to be integrated by a \time"-marching algorithm, where the direction of propagation z

plays the role of time. We reemphasize that backscattering e�ects are not taken into account by the NLS (2.4).

Indeed, once (2.4) is solved, the overall solution, according to (2.2), is the slowly varying amplitude  times

the forward propagating oscillatory component eik0z.

2.3. Preliminary Analysis of Backscattering. To the best of our knowledge, no accurate

quantitative analysis of backscattering in nonlinear self-focusing has ever been performed, although there is a

general belief that the magnitude of the backscattered signal is small. In this section we present a preliminary

asymptotic study of backscattering. To do that, we consider a more general ansatz for E than (2.2) which

is composed of both forward-propagating and backward-propagating waves, i.e.,

E = (�r20k
2
0)
�1=2�

�
A(r; z)eik0z +B(r; z)e�ik0z

�
;(2.5)

where A and B are slowly-varying envelopes. Substitution in the NLH (2.1) yields

eik0z
�
Azz +2ik0Az +�?A+ jA+ e�2ik0zBj2�A

�
+ e�ik0z

�
Bzz +2ik0Bz +�?B+ jA+ e�2ik0zBj2�B

�
= 0 :

Changing to the nondimensional variables (2.2) gives (after dropping the tildes)

ei(4=f
2)z

�
f2Azz + iAz+�?A+ jA+ e�i(4=f

2)zBj2�A
�
+

�
f2Bzz + iBz+�?B+ jA+ e�i(4=f

2)zBj2�B
�
= 0 :

Let us average the last equation over one fast oscillation. For example, using Taylor expansion, we obtain

2

�f2

Z z+�f2=4

z��f2=4

B(�) d� =
2

�f2

Z z+�f2=4

z��f2=4

[B(z) + (� � z)Bz(z) + : : :] d� = B(z)(1 +O(f2)) :

Similarly,

2

�f2

Z z+�f2=4

z��f2=4

ei(4=f
2)zA(�) d� =

2

�f2

Z z+�f2=4

z��f2=4

ei(4=f
2)z[A(z) + (� � z)Az(z) + : : :] d�

=
f2

4i
Aze

i(4=f2)z +O(f4) :

Consequently, we obtain the following equation for the backscattered wave

f2Bzz + iBz +�?B + jA+ e�i(4=f
2)zBj2�B = f2F ; B(z)

���
z=1

= 0 ;(2.6)

where

F =
1

4i
ei(4=f

2)z

�
f2Azz + iAz +�?A+ jA+ e�i(4=f

2)zBj2�A
�
z

:

Let us now employ the common assumption that backscattering is small, i.e., B � A. Since f � 1, equation

(2.6) for B can be approximated with the linear Schr�odinger equation

iBz +�?B + jAj2�B = f2F; B(z)
���
z=1

= 0 ;

where

F =
1

4i
ei(4=f

2)z

�
iAz +�?A+ jAj2�A

�
z

:
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Since the solution of

iBz +�?B + jAj2�B = 0 ; B(z)
���
z=1

= 0 ;

is B � 0, the above analysis suggests that

B=A = O(f2) :(2.7)

If the quadratic scaling law (2.7) can be con�rmed independently, then it will provide a convincing

justi�cation for the assumption that backscattering is indeed small. Hence, in our simulations we expect to

see that

(�r20k
2
0)
1=2� jEj � jAj
jAj = O(f2):(2.8)

The numerical results of Section 4 do corroborate these expectations.

The above analysis also shows that

jEj = �
�r20k

2
0

��1=2� jAj
����1 + B

A
e�2ik0z

���� :
Therefore, the amplitude of the NLH solution may have O(f2) ripples with the wavelength �=k0 due to

backscattering on top of the slowly varying amplitude of the forward-propagating wave. NLH simulations

suggesting that this indeed may be the case have been reported in [7] (see also Figure 4.2 in Section 4). It

is not clear, however, to what extent the ripples observed in [7] are a numerical artifact due to placing the

far-�eld arti�cial boundary too close to the nonlinear self-focusing zone. Numerical study conducted in [7]

did, in fact, involve the analysis of how the location of the far-�eld arti�cial boundary a�ects the solution;

placing this boundary further and further away caused the reduction in the ripples' magnitude but never

allowed to eliminate them completely. This may still imply, though, that the boundary was not \su�ciently

far" away. Therefore, no de�nite conclusion as to the presence of the O(f2) ripples in the NLH solutions

can be made at this time and this question requires a subsequent thorough study.

2.4. Nonparaxiality and backscattering. The traditional way of introducing the paraxial

approximation is reported in Section 2.2, where the right-hand side of equation (2.3) is omitted and the

NLS is derived. The more careful analysis of Section 2.3 shows, however, that two approximations are, in

fact, being made when the NLH is approximated with the NLS: Neglecting Azz (the paraxial approximation

in the narrow sense, i.e., as it applies to the forward-propagating waves) and neglecting B (backscattering).

We recall that previous studies [4, 5] suggested that nonparaxiality of the right-traveling waves (i.e., Azz in

the sense of Section 2.3) arrests the collapse of the NLS solutions, but these studies did not take into account

backscattering e�ects. Having said that, we still note that the separation into nonparaxial and backscattering

e�ects, which is based on the ansatz (2.5), is somewhat arti�cial, since the problem in nonlinear. Therefore,

when we compare the NLH and NLS solutions, it is not precisely clear which part of the di�erence comes from

nonparaxial e�ects for the right-traveling waves, and which one from backscattering. A notable exception is,

however, at z = 0, where the di�erence between NLH and NLS solutions is solely due to backscattering.

2.5. Critical NLS. It is well known that solutions of the NLS (2.4) can become singular when either

�(D � 1) > 2, the supercritical NLS, or when �(D � 1) = 2, the critical NLS (D is the space dimension).

However, whereas in supercritical collapse nonlinearity dominates over di�raction near the singularity, in

the critical collapse nonlinearity and di�raction are almost balanced near the singularity. Consequently, the
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singularity formation is highly sensitive to small perturbations in the critical case, but much less so is the

supercritical case.

The physical case that corresponds to the propagation of laser beams in bulk Kerr media is the critical

one, as D = 3 and � = 1. However, in order to reduce the complexity of the computations, below we consider

the critical case D = 2 and � = 2. Thus, the NLH for E = E(r; z) and the NLS for  =  (r; z), which are

solved numerically in this study are

Ezz +Err + k20(1 + �jEj4)E = 0 ;(2.9)

and

i z +  rr + j j4 = 0 ;(2.10)

respectively.

3. Numerical Methods. The NLH (2.9) is solved using fourth-order �nite di�erences. The choice

of a higher-order method is motivated primarily by the necessity to resolve a small-scale phenomenon

(backscattering) at the background of the forward propagating waves. The NLS (2.10) is also solved by

a fourth-order scheme; it is natural to expect that this will leave less room for potential purely numerical

discrepancies between the two techniques and as such, will allow for a more accurate comparison. Besides,

it is generally known that higher-order methods provide for a better resolution of waves.

3.1. Numerical Integration of the NLH. Our numerical method for solving the NLH is delineated in

[7]; here we only outline its key elements. We use a conventional fourth-order central-di�erence discretization

of the Laplacian; in so doing the stencil is �ve-node wide in both r and z directions. As the equation is

nonlinear, we implement a nested iteration scheme. On the outer loop, we freeze the nonlinearity, i.e.,

consider the coe�cient k2 of (2.1) as a given function of r and z, which is actually obtained by taking

jEj4 from the previous iteration. This way we arrive at a linear equation with variable coe�cients. The

latter is also solved by iterations on the inner loop of the nested scheme. Here, we leave the entire varying

part of the equation, which is proportional to �, on the lower level, and on the upper level need to invert

only the constant-coe�cient linear Helmholtz operator � + k20I . Formally, our iteration scheme resembles

the �xed-point approach, however, no rigorous convergence theory is available yet, and the convergence

has to be assessed experimentally. The advantage of using these nested iterations is that �rst, the method

eventually reduces to the repeated solution of one and the same linear constant coe�cient equation driven

by di�erent source terms. As explained below, this can be done e�ciently on the discrete level. Second, the

radiation boundary conditions and the two-way ABCs are most convenient to set on the upper time level of

the iteration scheme already for the linear constant-coe�cient operator.

To solve the linear-constant coe�cient Helmholtz equation (discrete counterpart of �E+k20E = g, where

g is the right-hand side generated on the previous iteration) we �rst separate the variables by implementing

the discrete Fourier transform in the transverse direction r; the boundary conditions are symmetry at r = 0

and zero Dirichlet at r = rmax. This yields a collection of fourth-order one-dimensional �nite-di�erence

equations parameterized by the dual Fourier variable; each of the latter needs to be solved independently.

The two-way and radiation ABCs at z = 0 and z = zmax, respectively, are set in the Fourier space as well,

i.e., separately for each of the aforementioned one-dimensional equations. This is done by �rst identifying

the linearly-independent eigen-modes for the homogeneous version of each one-dimensional equation. It

is important to note that even though the original di�erential equation is of the second order, we are
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using its fourth-order approximation and as such, each homogeneous discrete one-dimensional equation

has four linearly independent solutions. One pair of the latter approximates the genuine modes of the

di�erential equation, those may be either traveling or evanescent waves depending on the value of the

dual Fourier variable. The other pair is a pure numerical artifact, these waves are always evanescent, but

their presence implies that every discrete equation requires two more boundary conditions compared to the

original di�erential equation. The radiation boundary conditions are constructed by requiring that on the

left boundary z = 0 only the left-traveling and/or left-decaying (evanescent) waves be present in the solution,

and on the right boundary z = zmax only the right-traveling and/or right-evanescent waves be present in the

solution. The selection is rendered by the so-called one-way discrete Helmholtz equations, which are the linear

homogeneous relations that de�ne the span of all appropriate modes for each boundary. The two-way ABC

that also prescribes the incoming signal at z = 0 is constructed on the basis of the corresponding radiation

boundary condition by substituting the right-traveling incoming wave into the one-way-to-the-left Helmholtz

equation and as such creating the inhomogeneity of a particular form, see [7]. Simple considerations based

on the linear superposition principle and uniqueness guarantee that the resulting nonhomogeneous relation

will correctly specify the incoming signal at z = 0 and still ensure the re
ectionless propagation of all the

outgoing (i.e., left-traveling) waves through z = 0 toward z = �1.

As concerns the computational complexity of the resulting algorithm, if we introduce the grid dimensions

Nr and Nz, then the cost of both the direct and inverse FFT will be O(NzNr lnNr). The cost of solving

each of the Nr one-dimensional systems will be linear with respect to Nz. Indeed, in the course of iterations

each of these systems needs to be solved many times for di�erent right-hand sides. Consequently, the sparse

LU decomposition can be performed only once ahead of time, and the cost of each backward substitution is

linear. Altogether, the complexity of each iteration is still O(NzNr lnNr).

3.2. Numerical Integration of the NLS. The NLS (2.10) is discretized in the r direction using

standard fourth-order central di�erences. It is integrated in z with a four-stage Runge-Kutta method starting

with the initial data Einc(r; 0). The boundary condition at the remote lateral boundary r = rmax is zero

Dirichlet, as in the case of the NLH.

4. Computational Results. In accordance with the discussion of Section 2 we have designed a set of

numerical experiments aimed at achieving two objectives: (I) Validate the computational algorithm of [7] for

solving the NLH through a comparison with numerical simulations of the NLS model, and (II) corroborate

that backscattering e�ects captured by the NLH model scale quadratically with the nonparaxiality parameter

f , as suggested by the analysis of Sections 2.3{2.4. Regarding the �rst objective, let us note that previously

we have tested the numerical algorithm of [7] in the nonlinear regime using grid convergence, but never

compared it with any other algorithm for computing the propagation of waves in Kerr media. As concerns

the second objective, it amounts to the accurate numerical computation of backscattering in nonlinear self-

focusing, and we are currently unaware of any previous technique with similar capabilities.

To be able to conduct an accurate comparison of the numerical predictions obtained with the NLH and

NLS models (equations (2.9) and (2.10), respectively), we have chosen a regime with the input power below

critical, for which the solution of the NLS does not develop singularities. We take k0 = 8 and � = 0:04, which

corresponds to 74% of the critical power Nc, see [7, 11]. The incoming beam pro�le is Einc(r; 0) = e�(r=r0)
2

,

such that the beam width r0 is much less than rmax. To allow for the variation of the nonparaxiality

parameter f = 1=k0r0, we vary the beam width r0 while keeping the wavenumber k0 and the quantity k0
p
�

that controls the fractional critical power unchanged.

In Figure 4.1 we show the on-axis amplitude pro�les for the NLH and NLS numerical solutions;
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Fig. 4.1. On-axis amplitudes of the solutions to NLH: jE(0; z)j, and NLS: (�r2
0
k2
0
)�1=4j (0; z)j, plotted vs. z=2LDF .

Figure 4.1(left) corresponds to f = 1=8, and Figure 4.1(right) corresponds to f = 1=16. We plot the

values of the computed solution on the axis of symmetry r = 0 because this is the most interesting location

in the domain where the genuinely nonlinear phenomena take place. A clear manifestation of nonlinear

self-focusing is the \bump," or peak, on the solution curves in Figure 4.1, whose value is higher than that of

the incoming wave Einc(0; 0).

It is easy to see that for both f = 1=8 and f = 1=16 the NLH and NLS curves in Figure 4.1 are close to

one another. As the NLS is a well-established model that has regular solutions for subcritical initial powers,

we conclude that our numerical algorithm for solving the NLH [7] [that starts the iteration process with the

initial guess E � 0] indeed converges to the correct solution.

We also notice that the discrepancy between the NLH and NLS curves on Figure 4.1(left) is larger

than that on Figure 4.1(right). This behavior is expected according to the analysis of Section 2.3, because

the discrepancy between the two curves is due to nonparaxiality and backscattering. In particular, these

simulations suggest that the NLS is indeed the asymptotic limit of the NLH as f �! 0. Perhaps the most

apparent manifestation of the presence of backscattering in the solution of the NLH is that the computed

value of the total electric �eld at z = 0 di�ers from that of the incoming wave, as one can clearly see in

Figure 4.2 where we zoom in on the two curves obtained for f = 1=8. The small ripples in the NLH solution

may also be evidence of backscattering (see Section 2.3).

Next, we quantify the backscattering e�ect by computing a series of solution pairs (NLS and NLH) for

additional values of f . In Figure 4.3(left) we show by asterisks on the log-log scale the quantity

�����k20r20�1=4E(0; 0)�  (0; 0)
��� �

�����k20r20�1=4E(0; 0)�A(0; 0)
���(4.1)

(cf. formula (2.8)), where E is the computed solution of the NLH and  is the solution to the NLS that

satis�es the initial condition  (0; 0) = 1, for f = 1=16; 1=12; 1=10; and1=8. The solid line on Figure 4.3(left)

that �ts closely the computed data is 0:75 � f2:05. This essentially corroborates that the magnitude of

backscattering indeed scales quadratically with the nonparaxiality parameter f , as predicted in Section 2.3

and further discussed in Section 2.4.

Let us also note that to evaluate the quantity (4.1) we do not really need to solve the NLS, because the

8



0 0.1 0.2 0.3
Normalized propagation distance  

0.9

0.95

1

1.05

E
le

ct
ric

 fi
el

d 
am

pl
itu

de

Nonparaxiality parameter f=1/8

NLS
NLH

Fig. 4.2. Zoom-in on Figure 4.1(left) in the area of the nonlinear self-focusing peak.

initial pro�le at z = 0 is given. To compare the actual computed solutions of the NLH and NLS, we plot on

Figure 4.3(right) the quantity

�����k20r20�1=4 jE(0; z)j � j (0; z)j
���(4.2)

for f = 1=8 and f = 1=16 (same values as on Figure 4.1) as a function of the normalized propagation

distance for z � 0. Although the curves on Figure 4.3(right) are oscillatory, we still see that that the

di�erence between the solutions of the NLH and NLS decreases for all z with the decrease of f .

0.06 0.13
2e−3

2e−2

f

0 1
0

0.01

z/2L
DF

f=1/8

f=1/16

Fig. 4.3. Left: The quantity given by formula (4.1) as a function of f compared on the log-log scale with the approximation

0:75�f2:05 (solid line). Right: The di�erence (4.2) between the two solutions as a function of z=2LDF for f = 1=8 and f = 1=16.

5. Conclusions. We have compared numerically the solutions to the nonlinear Schr�odinger equation

and nonlinear Helmholtz equation, both of which model the propagation of time-harmonic electromagnetic

9



waves in Kerr media. The NLH was solved using a new fourth-order method supplemented by the two-way

arti�cial boundary conditions that guarantee the proper behavior of the waves as they enter and leave the

computational domain. As the NLS is considered an established model, the agreement of the NLH and NLS

simulations provides a good justi�cation that the NLH algorithm indeed converges to the correct physical

solution. On the other hand, the NLH is a more comprehensive model that, unlike the NLS, takes into

account the phenomenon of nonlinear backscattering. As such, we attribute the small discrepancies that do

exist between the NLH and NLS solution to nonparaxial and backscattering e�ects. By analyzing several

computational variants that correspond to di�erent values of the nonparaxiality parameter f we have been

able to corroborate that the magnitude of the backscattered wave indeed scales quadratically with this

parameter, according to the theoretical predictions. To the best of our knowledge, this is the �rst study ever

that allows for an accurate quantitative estimation of backscattering in nonlinear self-focusing.
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